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Abstract—In this work, a numerical solution of the unsteady
incompressible Navier- Stokes equations with a new boundary con-
dition is proposed. The method suggested is based on an algorithm
of discretization by finite element method in space and the Euler
full-implicit scheme in time. The matrix system is solved at each
iteration with a preconditioned GMRES method. Also, we proposed
two types of a posteriori error indicator, with one being for the time
discretization and the other for the space discretization. We prove the
equivalence between the sum of the two types of error indicators and
the full error.
In order to evaluate the performance of the method, the numerical
results of two-dimensional backward-facing step flow are compared
with some previously published works or with others coming from
commercial code like ADINA (Automatic Dynamic Incremental
Nonlinear Analysis) system.
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I. INTRODUCTION

IT is well known that the nonstationary incompressible
Navier-Stokes equations are one of the main equations

studied in mathematical physics and fluid mechanics fields.
Numerous works have been devoted to numerical solutions
of the above equations using finite element methods (FEMs).
For example, Bernardi, and Raugel [7] for the conforming
FEM, He [8] for the fully discrete penalty FEM, John and
Kaya [14] for the variational multiscale method, and we
quote Refs. [15, 19] for the stabilized FEMs. The finite
element method, which is one of the well-known methods
in the theory of partial differential equations, has been used
to prove existence properties and to study the finite element
approximation for the solutions of the equations [20, 21].

This paper presents numerical studies for the Navier-
Stokes equations in the case of two-dimensional laminar
time-dependent flows where the numerical problem is well
posed with boundary conditions and other aspects of the
problem. For the incompressible Navier-Stokes equations, we
use the approximation with Euler fully-implicit scheme, and a
finite element discretizations on a quadrilateral element mesh,
whereas the discrete Navier-Stokes equations require a method
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such as the generalized minimum residual method (GMRES),
which is designed for non symmetric systems [3, 10]. The key
for fast solution lies in the choice of effective preconditioning
strategies. The package offers a range of options, includ-
ing algebraic methods such as incomplete LU factorizations,
as well as more sophisticated and state-of-the-art multigrid
methods designed to take advantage of the structure of the
discrete linearized Navier-Stokes equations. In addition, there
is a choice of iterative strategies, Picard iteration or Newton’s
method, for solving the nonlinear algebraic systems arising
from the latter problem.
There are several ways to define error estimators by using
the residual equation. In particular, for the Navier-Stokes
problem, M. Ainsworth and J. Oden [16] and R. Verfurth [17]
introduced several error estimators and provided that they are
equivalent to the energy norm of the errors.
The paper is organised as follows. Section 2 presents the
model problem used in this paper. The discretization by mixed
finite elements is described in section 3. Section 4 shows the
methods of a posteriori error bounds of the computed solution.
Numerical experiments carried out within the framework of
this publication and their comparisons with other results are
shown in section 5.

II. TIME-DEPENDENT NAVIER-STOKES EQUATIONS

Let Ω be a bounded simply-connected open domain in Rd,
d = 2, 3, with a Lipschitz continuous connected boundary ∂Ω.
We consider the unsteady Navier-Stokes equations for the flow
of a Newtonian incompressible viscous fluid with constant
viscosity

∂−→u
∂t − ν∇2−→u +−→u .∇−→u +∇p = −→

f in Ω× (0, T ],
∇.−→u = 0 in Ω× (0, T ],
−→u (x, 0) = −→u 0(x) in Ω,

(1)
Where ν > 0 is a given constant called the kinematic viscosity,
T > 0 is some final time, −→u is the fluid velocity, −→u 0(x) is
the initial velocity, p is the pressure field, ∇ is the gradient
and ∇. is the divergence operator.
The boundary conditions on ∂Ω given by:

Cβ : −→u + β (ν∇−→u − pI)−→n = −→g in Γ =: ∂Ω, (2)

where −→n denote the outward unit normal vector, −→g ∈ H
1
2 (Γ)

and β nonzero defined on ∂Ω verify:
There are two strictly positive constants a1 and b1 such that:

a1 ≤ 1

β(x)
≤ b1 for all x ∈ Γ. (3)
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Remark : If β is strictly positive constant such that β ≺≺ 1
then Cβ , is the Dirichlet boundary condition and if β ≻≻ 1
then the Cβ , is the Neumann boundary condition. For this, β
is called the Neumann coefficient.

We set

X = {−→v ∈ L2(Ω)2 : div−→v = 0 , −→v .−→n |∂Ω = 0}, (4)

Y = {−→v ∈ H1
0 (Ω)

2 : div−→v = 0}, (5)

V = H1
0 (Ω)×H1

0 (Ω), W = L2(Ω)2, (6)

and

Q = {q ∈ L2(Ω) :

∫
Ω

q(x)dx = 0}. (7)

Let the Stokes operator A = −P ∆, where P is the L2-
orthogonal projection of W onto X, and D(A) = H2(Ω)2∩Y .
Let the assumption (B1) on Ω [13]:
(B1): We suppose that Ω is smooth so that the unique solution
(−→v , q) ∈ (V,Q) of the Stokes problem

−ν∆−→v +∇q = −→g 1, div−→v = 0 in Ω , −→v |∂Ω = 0, (8)

exists and satisfies ∥−→v ∥2+∥q∥1 ≤ C∥−→g 1∥0, for all −→g 1 ∈W ,
where C > 0 is a constant depending on Ω and ν.

Let the bilinear forms a : V ×V −→ R, b : V ×Q −→ R,
d1 : Q×Q −→ R, and the trilinear form d : V ×V ×V −→ R

a(−→u ,−→v ) = ν

∫
Ω

∇−→u : ∇−→v dx+

∫
Γ

1

β
−→u .−→v ,

b(−→v , q) =
∫
Ω

(q∇.−→v )dx, (9)

Let

d1(p, q) =

∫
Ω

p q dx,

D(−→u ,−→v ) = (−→u .∇)−→v +
1

2
(∇.−→u )−→v , −→u ,−→v ∈ V, (10)

d(−→u ,−→v ,−→w ) = ⟨D(−→u ,−→v ),−→w ⟩V ′,V

= ((−→u .∇)−→v ,−→w ) +
1

2
((∇.−→u )−→v ,−→w ) (11)

=
1

2
((−→u .∇)−→v ,−→w )− 1

2
((−→u .∇)−→w ,−→v )

for all −→u ,−→v ,−→w ∈ V .
These inner products induce norms on V and Q denoted by
∥.∥V and ∥.∥Q respectively.

∥−→v ∥V = a(−→v ,−→v ) 1
2 ∀−→u ∈ V, (12)

∥q∥Q = d1(q, q)
1
2 ∀q ∈ Q. (13)

Let the norm [9, 22]

[−→v ](t) = (∥−→v (., t)∥2L2(Ω)2 + ν

∫ t

0

∥∇−→v (., s)∥2L2(Ω)ds)
1
2 . (14)

Let (B2) the assumption:
(B2) :

−→
f (x, t) ∈ C0(0, T,W )∩L2(0, T,H1(Ω)) ,

−→
f t(x, t) ∈

L2(0, T, L2(Ω)) and −→u 0(x) ∈ D(A).

Given the continuous functional l : V −→ R

l(−→v ) =
∫
Ω

−→
f .−→v dx+

∫
Γ

1

β
−→g .−→v dx. (15)

Then the standard weak formulation of the unsteady Navier-
Stokes problem (1)-(2) is the following:
Find (−→u , p) ∈ V ×Q such that

−→u (., 0) = −→u 0 in Ω, (16)

(
∂−→u
∂t

,−→v ) + a(−→u ,−→v )− b(−→v , p) + d(−→u ,−→u ,−→v ) = l(−→v ), (17)

−b(−→u , q) = 0, (18)

for all (−→v , q) ∈ V ×Q and t ∈ (0, T ).

III. FINITE ELEMENT APPROXIMATION

Our goal here is to consider the unsteady Navier-
Stokes equations with a new boundary conditions in a two
dimensional domain and to approximate them by a finite
element method in space and the Euler full-implicit scheme
in time.
Let τh, h > 0, be a family of triangulations of Ω. We denote
by hK the diameter of a simplex K, by hE the diameter of a
face E of K, and we set h = maxK∈τh{hK}.
For any K ∈ τh, we denote by ε(K) and N(K) the set of its
edges and vertices, respectively.
We let εh =

∪
K∈τh

ε(K) denotes the set of all edges split
into interior and boundary edges.
εh = εh,Ω

∪
εh,Γ, where εh,Ω = {E ∈ εh : E ⊂ Ω} and

εh,Γ = {E ∈ εh : E ⊂ ∂Ω}.

Let 0 = t0 < t1 < ... < tN = T , τn = ∆tn = tn − tn−1,
by τ the N-tuple (τ1, ..., τN ) and δτ = max2≤n≤N

∆tn
∆tn−1

the
regularity parameter.
We define the function −→v τ on [0, T] which is affine on each
interval [tn−1; tn], 1 ≤ n ≤ N by

−→v τ =
t− tn−1

∆tn
−→v n +

tn − t

∆tn
−→v n−1, (19)

for all t ∈ [tn−1, tn], 1 ≤ n ≤ N .
For any Banach space F, and each family (−→v n)0≤n≤N ∈
FN+1, we denote by Wτ (F ) the space of such functions.
Let the discrete norm on space Wτ (H

1
0 (Ω))

[[−→v τ ]](tn) = (∥−→v n∥2L2(Ω)2 + ν

n∑
m=1

∆tm∥∇−→v m∥2L2(Ω))
1
2 , (20)

for all n, 1 ≤ n ≤ N.
The finite element approximation to (1)-(2) by the Euler’s
scheme is then
Find (−→u n)0≤n≤N ∈ W × V N and (pn)1≤n≤N ∈ QN , such
that

−→u 0 = −→u 0 in Ω, (21)
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1

∆tn
(−→u n −−→u n−1,−→v ) + a(−→u n,−→v )−

b(−→v , pn) + d(−→u n,−→u n,−→v )

= (
−→
f

n
,−→v ) + 1

β
(−→g n.−→v )Γ, (22)

−b(−→u n, q) = 0, (23)

for all (−→v , q) ∈ V ×Q.

Let Vh and Qh the approximation spaces for Q1 − P0

approximation. Using the stabilized Q1 − P0 method and
a Trapezoid Rule time stepping [27], we find the pair
(
−→
d

n+1

h , pn+1
h ) ∈ Vh ×Qh, such that

2(
−→
d

n+1

h ,−→v h) + νkn+1(∇
−→
d

n+1

h ,∇−→v h) +

kn+1(−→w n+1
h .∇−→

d
n+1

h ,−→v h)− (pn+1
h ,∇.−→v h) (24)

= (
∂−→u n

h

∂t
,−→v h)− ν(∇−→u n

h,∇−→v h)− (−→w n+1
h .∇−→u n

h,
−→v h),

−(∇.−→d
n+1

h , qh)− α γ(pn+1
h , qh) = 0, (25)

for all (−→v h, qh) ∈ Vh × Qh, where −→w n+1
h =

(1 + kn+1

kn
)−→u n

h − kn+1

kn

−→u n−1
h and kn+1 := tn+1 − tn is

the current time step.
The velocity and acceleration at tn+1 are defined by
−→u n+1

h = −→u n
h + kn+1

−→
d

n

h , ∂−→u n+1

h

∂t = 2
−→
d

n

h − ∂−→u n

h

∂t .

α is the stabilization parameter, and the stabilization term
γ(ph, qh) is defined by [3]

γK(ph, qh) :=
|K|
4

∑
E∈ΓK

1

hE

∫
E

[ph]E [qh]E , (26)

γ(ph, qh) :=
∑

K∈TK

γK(ph, qh), (27)

where ΓK is the set consisting of the four interior element
edges in the macroelement K, TK is a macroelement
partitioning of the domain Ω, |K| is the mean element area
within the macroelement, [ . ]E is the jump across edge E
and hE is the length of E.

Let Vn,h ⊂ V and Qn,h ⊂ Q. We assume that:
(B3): (1) X1

n,h ⊂ Vn,h such that:

X1
n,h = {−→v n ∈ V : ∀K ∈ τn,h,−→v h|K ∈ P2(K)}, (28)

where P2(K) is the space of polynomials of degree ≤ 2, for
K ∈ τn,h.

(2) for 1 ≤ n ≤ N , there exists a constant γn,h > 0 such
that

sup
−→v h∈Vn,h

(∇.−→v h, qh)

∥∇−→v h∥L2(Ω)
≥ γn,h∥qh∥L2(Ω), (29)

for all qh ∈ Qn,h.

Let the space

Yn,h = {−→v n ∈ Vn,h; (∇.−→v h, qh) = 0, ∀qh ∈ Qn,h}. (30)

Let πh the projection operator from L2(Ω) onto V0,h.
Let −→u 0

h ∈ V0,h and p0h = 0. We find (−→u n
h)0≤n≤N ∈∏N

n=0 Vn,h and (pnh)1≤n≤N ∈
∏N

n=0Qn,h such that

−→u 0
h = πh−→u 0 in Ω, (31)

1

∆tn
(−→u n

h −−→u n−1
h ,−→v h) + d(−→u n

h,
−→u n

h,
−→v h)−

b(−→v h, p
n
h) + a(−→u n

h,
−→v h)

= (
−→
f

n
,−→v h) +

1

β
(−→g n.−→v h)Γ, (32)

−b(−→u n
h, qh) = 0, (33)

for all (−→v h, qh) ∈ Vn,h ×Qn,h and 1 ≤ n ≤ N .

We use a set of vector-valued basis functions {−→φi}i=1,...,nu

so that

−→u h =

nu∑
i=1

ui−→φi. (34)

We introduce a set of pressure basis functions {ψk}k=1,...,np

and set

ph =

np∑
k=1

pkψk, (35)

Where nu and np are the numbers of velocity and pressure
basis functions, respectively.
We obtain a non linear system of algebraic equations:

D
dU

dt
(t) + [N(U(t)) +M ]U(t) +BP (t) = L(t), (36)

BTU(t) = 0. (37)

Where

U(t) = (u1(t), u2(t), ..., unu(t))
T , (38)

P (t) = (p1(t), p2(t), ..., pnp(t))
T . (39)

The matrix B is the divergence matrix

B = [bk,j ]; bk,j = −
∫
Ω

ψk∇.−→φ j , (40)

and

D = [dij ], dij =

∫
Ω

−→φ i.
−→φ j , (41)

N = [nij ], nij =

nu∑
k=1

uk(t)

∫
Ω

(−→φ j .∇−→φ k).
−→φ i, (42)

M = [mij ], mij = ν

∫
Ω

∇−→φ i : ∇−→φ j +

∫
∂Ω

1

β
−→φ i.

−→φ j , (43)

L = [li]; li =

∫
Ω

−→
f .−→φ i +

∫
∂Ω

1

β
−→g .−→φ i, (44)
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for i, j = 1, ..., nu, k = 1, ..., np.
Solution of the nonlinear system of equations (36)-(37), can be
carried out efficiently using Picards method. The linear system
we need to solve within each iteration of Picards method has
the following generic form:(

A0 +N BT
0

B0 0

)(
U
P

)
=

(
L
0

)
. (45)

We use the generalized minimum residual method (GMRES)
for solving the nonsymmetric systems [3, 31].
Preconditioning is a technique used to enhance the conver-
gence of an iterative method to solve a large linear system
iteratively. Instead of solving a system Λx = b, one solves
a system , P−1Λx = P−1b where P is the preconditioned.
A good preconditioned should lead to fast convergence of
the Krylov method. Furthermore, systems of the form Pz =
r should be easy to solve. For the Navier-Stokes equations,
the objective is to design a preconditioned that increases
the convergence of an iterative method independent of the
Reynolds number and number of grid points. We use a least-
squares commutator preconditioning [3, 23, 30].

IV. ERROR ESTIMATES

In this section we consider a posteriori error estimator
for the unsteady incompressible Navier-Stokes equation. We
propose two types of error indicators: the time error indicators
and the space error indicators, and we derive the upper bounds
for the error estimators. We prove the equivalence between
the sum of the two types of error indicators and the full error.
For simplicity, we suppose that β = 0 and −→g =

−→
0 .

Let −→f
n

h the approximation of −→
f

n
which is polynomial of

degree ≤ l on all elements of τn;h, and [.]E the jump of across
E in the direction −→n E , for each E ∈ ε(K).
Let the time error indicators

ηn =

√
∆tn
3
ν ∥∇(−→u n

h −−→u n−1
h )∥L2(Ω), 1 ≤ n ≤ N, (46)

and let the space error indicators

ηnK = hK∥−→f
n

h −
−→u n

h −−→u n−1
h

∆tn
+ ν∆−→u n

h −∇pnh −

(−→u n
h.∇)−→u n

h∥L2(K) +
∑

E∈ε(K)

h
1
2

E∥[ν∂nE
−→u n

h −

pnh
−→n E ]E∥L2(E) + ν∥div−→u n

h∥L2(K). (47)

The time error indicators ηn is local in time and global in
space, and the space error indicators ηnK is local both in time
and in space.

Theorem 1: We suppose that the assumptions (B1) and
(B2) holds, then, the problem (17)-(18) has a unique solution
−→u ∈ L∝(0, t;X) ∩ L2(0, t;Y ) such that

∥−→u (t)∥20 + ∥∇−→u (t)∥20 + ∥A−→u (t)∥20 + ∥∇p(t)∥20 + ∥−→u t(t)∥20

≤ K1, (48)∫ t

0

{∥∇−→u ∥20 + ∥−→u t∥20 + ∥A−→u ∥20 + ∥∇p∥20 + ∥∇−→u t∥20}ds

≤ K1, (49)

where K1 is a positive constant.
We have

[−→u ](t) ≤ (
1

ν
∥−→f ∥2L2(0,t;H−1(Ω)2) + ∥−→u 0∥2L2(Ω))

1
2 , (50)

and

∥∂
−→u
∂t

+ (−→u .∇)−→u +∇p∥L2(0,t;H−1(Ω)2)

≤ 2(∥−→f ∥2L2(0,t;H−1(Ω)2) +
ν

2
∥−→u 0∥2L2(Ω))

1
2 . (51)

Proof: See [11] .

Let

−→v hτ =
t− tn−1

∆tn
−→v n

h +
tn − t

∆tn
−→v n−1

h , (52)

for all t ∈ [tn−1, tn], 1 ≤ n ≤ N .
Theorem 2: We suppose that the assumptions (B1)− (B2)

holds, −→u be a solution of the problem (17)-(18), and −→u τ is
the solution of (22)-(23), we have

[−→u −−→u τ ](tn) ≤ β1(

n∑
m=1

1

ν
(ηm)2 + ∥−→u τ −−→u hτ∥2L2(0,tn;H1)

+
1

ν
∥−→f −Πτ

−→
f ∥2L2(0,tn;H−1))

1
2 , (53)

for all n, 1 ≤ n ≤ N ,
Here β1 is a positive constant depends on ν and −→

f , and Πτ
−→
f

is the step function which is constant and equal to −→
f (tn) on

each interval (tn−1; tn); 1 ≤ n ≤ N .
Proof: Using (17)-(18) and (22)-(23), the pair (−→u −−→u τ , p−
Πτpτ ) satisfies

(−→u −−→u τ )(., 0) = 0 in Ω, (54)

and

(
∂

∂t
(−→u −−→u τ ),−→v ) + a(−→u −−→u τ ,−→v )−

b(−→v , p−Πτpτ ) + d(−→u ,−→u ,−→v )− d(−→u τ ,−→u τ ,−→v )
= (

−→
f −Πτ

−→
f ,−→v ) + a(−→u n −−→u τ ,−→v ) +

d(−→u n,−→u n,−→v )− d(−→u τ ,−→u τ ,−→v ), (55)

−b(−→u −−→u τ , q) = 0, (56)

for all (−→v , q) ∈ V ×Q.
Setting (−→v , q) = (−→u −−→u τ , p−Πτpτ ) in (55)-(56), we obtain

1

2

d

dt
∥−→u −−→u τ∥2L2(Ω) + ν∥∇(−→u −−→u τ )∥2L2(Ω) +

d(−→u ,−→u ,−→u −−→u τ )− d(−→u τ ,−→u τ ,−→u −−→u τ )

= (
−→
f −Πτ

−→
f ,−→u −−→u τ ) + a(−→u n −−→u τ ,−→u −−→u τ ) +

d(−→u n,−→u n,−→u −−→u τ )− d(−→u τ ,−→u τ ,−→u −−→u τ ).

Using the bound of d(−→u ,−→v ,−→w ) and (48), (49), (51), we have

d(−→u n,−→u n,−→u −−→u τ )− d(−→u τ ,−→u τ ,−→u −−→u τ )

≤ β2|−→u n −−→u τ |1|−→u −−→u τ |1, (57)

d(−→u ,−→u ,−→u −−→u τ )− d(−→u τ ,−→u τ ,−→u −−→u τ )

≤ β3|−→u −−→u τ |1∥−→u −−→u τ∥0,Ω. (58)
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Let β4 = max{β2
2 , β

2
3}. We have

1
2

d
dt∥−→u −−→u τ∥2L2(Ω) + ν∥∇(−→u −−→u τ )∥2L2(Ω)

≤ 1

ν
∥−→f −Πτ

−→
f ∥2H−1 +

ν

4
|−→u −−→u τ |21 +

3ν

16
|−→u −−→u τ |21,Ω + 4ν|−→u n −−→u τ |21,Ω +

4β4
ν

|−→u n −−→u τ |21,Ω +
4β4
ν

∥−→u −−→u τ∥20,Ω +

β4|−→u n −−→u τ |21,Ω + β4∥−→u −−→u τ∥20,Ω. (59)

We have the following inequality [9]∫ tm

tm−1

∥∇(−→u m −−→u τ )(., x)∥20,Ωdx

≤ 3

ν
(ηm)2 + 6

∫ tm

tm−1

∥∇(−→u τ −−→u hτ )(., x)∥20,Ωdx. (60)

Then
∥(−→u −−→u τ )(tm)∥2L2(Ω) + ν

∫ tm
tm−1

∥∇(−→u −−→u τ )∥2L2(Ω)dt

≤ β5(η
m)2 + ∥(−→u −−→u τ )(tm−1)∥20,Ω +

β6

∫ tm

tm−1

∥−→u −−→u τ∥20,Ωdt+

6β5ν

∫ tm

tm−1

∥∇(−→u τ −−→u hτ )(., x)∥2L2(Ω)dx+

2

ν
∥−→f −Πτ

−→
f ∥2L2(tm−1,tm;H−1(Ω)). (61)

Using (61) and (20), we obtain (53).
Theorem 3: We suppose that the assumptions (B1)− (B2)

holds. (−→u , p) be a solution of the problem (17)-(18) and
(−→u τ ,Πτpτ ) the solution of (22)-(23), we have
n∑

m=1

∫ tm

tm−1

∥ ∂
∂t

(−→u −−→u τ ) + (−→u .∇)−→u − (−→u m.∇)−→u m +

∇(p−Πτ pτ )∥2H−1(Ω)dt

≤ C1(

n∑
m=1

ν(ηm)2 +

n∑
m=1

∫ tm

tm−1

(ν2∥−→u τ −−→u hτ∥21 +

∥−→f −Πτ
−→
f ∥2H−1(Ω))dt), (62)

for all n, 1 ≤ n ≤ N ,
Here C1 is a positive constant depends on ν, −→f and Ω.
Proof: Using (55)-(56) gives

∥ ∂
∂t

(−→u −−→u τ ) + (−→u .∇)−→u − (−→u m.∇)−→u m +

∇(p−Πτpτ )∥−1

= sup
−→v ∈H1

0 (Ω)

(
−→
f −Πτ

−→
f ,−→v )− a(−→u −−→u m,−→v )
∥∇−→v ∥L2(Ω)

≤ ∥−→f −Πτ
−→
f ∥H−1(Ω) + ν|−→u −−→u τ |1 +

ν|−→u τ −−→u m|1. (63)

Using (53), (60), we obtain (62).

Let the assumption (B4)
(B4): Q0

n,h ⊂ Qn,h or Q1
n,h ⊂ Qn,h such that

Q0
n,h = {qh ∈ L2

0(Ω); qh|K ∈ P0(K), ∀ K ∈ τn,h}, (64)

Q1
n,h = {qh ∈ H1(Ω) ∩ L2

0(Ω); qh|K ∈ P1(K),

∀ K ∈ τn,h}. (65)

Let the assumption (B5)
(B5): For all 1 ≤ p ≤ N , there exists a conforming
triangulation τ̃p,h, such that each element K of τp−1,h or of
τp,h is the union of elements K̃ of τ̃p,h such that hK ∼ hK̃ .

Lemma 4: Let π: V 7→ V the operator π−→v = −→w , ∀−→v ∈ V ,
where (−→w , r) ∈ V × Q is the unique solution of the Stokes
problem 

−△−→w +▽r = 0 in Ω,
∇.−→w = ∇.−→v in Ω,
−→w =

−→
0 in ∂Ω.

(66)

Then, we have
(i) π−→v =

−→
0 ∀−→v ∈ Y .

(ii) We have

|−→v − π−→v |1 ≤ |−→v |1, |π−→v |1 ≤ 1

λ
|div−→v |L2(Ω), ∀−→v ∈ V.

(67)
where

λ = inf
q∈Q

sup
−→v ∈V

b(−→v , q)
|−→v |1|q|0

.

(iii) We suppose that the assumption (B4) hold, then

∥π−→v h∥L2(Ω) ≤ Chθn∥div−→v h∥L2(Ω), (68)

for all −→v h ∈ Yn,h, 1 ≤ n ≤ N ,
where {

θ = 1 if Ω is convex,
θ = 1

2 otherwise.
(69)

Proof: See [9].
Theorem 5: We suppose that the assumptions (B2)− (B4)

holds. Let −→u τ the solution of (22)-(23) and −→u hτ associated
with the solution (−→u n

h)0≤n≤N of (32)-(33), we have

[[−→u τ −−→u hτ ]](tn) ≤ C2(

n∑
m=1

∆tm
∑

K∈τmh

((1 + ξhτ )(η
m
K )2 +

h2K
ν

∥−→f
m
−−→
f

m

h ∥20,K))
1
2 +

C3∥−→u 0 − πh−→u 0∥0,Ω, (70)

for all n, 1 ≤ n ≤ N ,
Here C2 and C3 are two positive constants depending on ν
and −→

f , ξhτ is defined by

ξhτ = sup
1≤n≤N

supK∈τn,h
h2θKK

ν∆tn
,

and {
θK = 1 if K ∩ ∂Ω ̸= Ø,
θK = 1

2 otherwise.
(71)

Proof: Combining (32)-(33) and(17)-(18), we obtain
((−→u n−−→u n

h)−(−→u n−1−−→u n−1

h )
∆tn

,−→v ) + a(−→u n − −→u n
h,
−→v ) −

b(−→v , pn − pnh) + d(−→u n −−→u n
h,
−→u n −−→u n

h,
−→v )

= [(
−→
f

n

h−
−→u n

h−
−→u n−1

h

∆tn
− (−→u n

h.∇)−→u n
h,
−→v −−→v h)−a(−→u n

h,
−→v −

−→v h)+b(−→v −−→v h, p
n
h)]+[(

−→
f

n
−−→
f

n

h,
−→v −−→v h)]+[−d(−→u n−

−→u n
h,
−→u n

h,
−→v ) + d(−→u n

h,
−→u n −−→u n

h,
−→v )]

= F1 + F2 + F3. (72)
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Let −→e n = −→u n−−→u n
h , −→v = −→e n−π−→e n, and −→v n = Rnh(−→e n−

π−→e n). We have div(−→e n − π−→e n) = 0,
where Rnh is a Clement type regularization operator [24].
We obtain

(−→e n −−→e n−1,−→e n) + ∆tnν(∇−→e n,∇−→e n) +

∆tnd(−→e n,−→e n,−→e n)

= (−→e n −−→e n−1, π−→e n) + ∆tn(ν(∇−→e n,∇π−→e n) +

d(−→e n,−→e n, π−→e n) +
3∑

i=1

Fi). (73)

From (73), Lemma 4 and using π−→e n = −π−→u n
h , we obtain

(−→e n −−→e n−1, π−→e n) ≤ 1

2
∥−→e n −−→e n−1∥2L2(Ω)

Cξhτ ν∆th∥div−→u n
h∥2L2(Ω),

ν∆tn(∇−→e n,∇π−→e n) ≤ ν∆tn
4

∥∇−→e n∥2L2(Ω) +

ν∆tn
λ2

∥div−→u n
h∥2L2(Ω),

d(−→e n,−→e n, π−→e n) + F3 ≤ ν

8
|−→e n|21 + C4∥div−→u n

h∥20,Ω +

C5|−→e n|20,Ω.

We have

F1 ≤ C∆tn(
∑

K∈τn,h

(hK∥−→f
n

h −
−→u n

h −−→u n−1
h

∆tn
−

(−→u n
h.∇)−→u n

h + ν∆−→u n
h −∇pnh∥L2(K)) +∑

E∈ε(K)

h
1
2

E∥[[ν∂nE
−→u n

h − pnh
−→n E ]]E∥L2(E))|−→v |1. (74)

F2 = (
−→
f

n
−−→
f

n

h,
−→v −−→v h)

≤ C
∑

K∈τn,h

hK∥−→f
n
−−→
f

n

h∥L2(K)|−→v |1. (75)

Using (73), we obtain

1

2
∥−→e n∥20 −

1

2
∥−→e n−1∥20 +

1

2
ν∆tn|−→e n|21

≤ C4{
∑

K∈τn,h

((ηnK)2 +
h2K
ν

∥−→f
n
−−→
f

n

h∥20,K) +

∑
K∈τn,h

(ξhτν∆tn +
ν∆tn
λ2

+ (∆tn)
2ξhτ )∥div−→u n

h∥20,K +

∆tn∥−→e n∥20}. (76)

Using (76) and the discrete Gronwall Lemma [4], we obtain
(70).

Corollary: We suppose that the conditions of Theorem 4
holds, we have following results

(
n∑

m=1

∫ tm

tm−1

∥ ∂
∂t

(−→u τ −−→u hτ ) + (−→u m.∇)−→u m −

(−→u m
h .∇)−→u m

h +∇ Πτ (pτ − phτ )∥2H−1(Ω)dx)
1
2

≤ C5(

n∑
m=1

∆tm
∑

K∈τm,h

(ν(1 + ξhτ )(η
m
K )2 +

h2K∥−→f
m
−−→
f

m

h ∥20,K))
1
2 + C6ν

1
2 ∥−→u 0 − πh−→u 0∥2L2(Ω), (77)

for all n, 1 ≤ n ≤ N .

Using the results and the standard results of [17], we have
following results.

Theorem 6: We suppose that the assumption (B5) hold, and
∃k , ∀n ∈ [1, N ], ∀K ∈ τn,h, ∀H ∈ Vn,h ∪Qn;h, H|K ∈ Pk.
We have

ηnK ≤ C7(
√
ν ∥∇(−→u n −−→u n

h)∥0,ωK
+

ν−
1
2 ∥ (

−→u n −−→u n
h)− (−→u n−1 −−→u n−1

h )

∆tn
+

∇(pn − pnh) + (−→u n.∇)−→u n −
(−→u n

h.∇)−→u n
h∥H−1(ωK) +

√
ν hK∥−→f

n
−−→
f

n

h∥0,ωK
), (78)

for all n ∈ [1, N ],
where ωK denote the union of elements of τn;h that share at
least a vertex with K.
Moreover, we have

ηn ≤
√
ν∥∇(−→u −−→u τ )∥L2(tn−1,tn;L2(Ω)) +

ν−
1
2 ∥ ∂
∂t

(−→u −−→u τ ) + (−→u .∇)−→u − (−→u n.∇)−→u n +

∇(p−Πτpτ )∥L2(tn−1,tn;H−1(Ω)) +

ν−
1
2 ∥−→f −Πτ

−→
f ∥L2(tn−1,tn,H−1(Ω)) +√

∆tn
3
ν (∥∇(−→u n −−→u n

h)∥L2(Ω) +

∥∇(−→u n−1 −−→u n−1
h )∥L2(Ω)). (79)

We define the error ε(tn) by:

ε2(tn) = [−→u −−→u τ ]
2(tn) + [−→u τ −−→u hτ ]

2(tn) +

1

ν

n∑
m=1

∫ tm

tm−1

∥ ∂
∂t

(−→u −−→u τ ) +∇(p−Πτ pτ ) +

(−→u .∇)−→u − (−→u m.∇)−→u m∥2H−1(Ω)dx+

1

ν

n∑
m=1

∫ tm

tm−1

∥ (
−→u m −−→u m

h )− (−→u m−1 −−→u m−1
h )

△tm
+∇ Πτ (pτ − phτ ) + (−→u m.∇)−→u m −
(−→u m

h .∇)−→u m
h ∥2H−1(Ω)dx, (80)

for all n = 1, ..., N .
Let

ηS = (

n∑
m=1

((ηm)2 +△tm
∑

K∈τm,h

(ηmK )2))
1
2 . (81)
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Summarizing and incorporating the the previous results, we
have

Theorem 7: We suppose that the assumptions (B1)− (B5)
holds, the full error ε(tn) is equivalent to the error ηS : there
exist positive constants m1 and M2 such that

m1 ηS ≤ ε(tn) ≤M2 ηS . (82)

V. NUMERICAL SIMULATION

Example. L-shaped domain Ω, parabolic inflow boundary
condition, natural outflow boundary condition.
This example represents flow in a rectangular duct with a
sudden expansion; a Poiseuille flow profile is imposed on the
inflow boundary (x=-1; 0 ≤ y ≤ 1), and a no-flow (zero
velocity) condition is imposed on the walls.
The Neumann condition (83) is applied at the outflow bound-
ary (x=5; −1 < y < 1) and automatically sets the mean
outflow pressure to zero.{

ν ∂ux

∂x − p = 0,
∂uy

∂x = 0.
(83)

Fig.1: Equally spaced streamline plot at t = 100, with a 32×96
square grid, Q1 −Q0 approximation and ν = 1/600.

Fig.2: The solution computed with ADINA system. The plots
show the Stream function at t = 100, with a 32 × 96 square
grid and ν = 1/600.

Fig.3: Quiver plot of flux solution at t = 100, with a 32× 96
square grid and ν = 1/600.

Fig.4: The solution computed with ADINA system. The plots
show the Velocity vectors solution at t = 100, with a 32× 96
square grid and ν = 1/600.

The two solutions are therefore essentially identical.This is
very good indication that my solver is implemented correctly.

(a) Pressure at ν = 1.

(b) Pressure at ν = 1
40 .

(c) Pressure at ν = 1
100 .
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(d) Pressure at ν = 1
500 .

Fig.5: Pressure solutions at t = 120, for: ν = 1, ν = 1
40 ,

ν = 1
100 , ν = 1

500 , with a 32 × 96 square grid and Q1 − P0

approximation.

(a) Pressure at t = 10.25.

(b) Pressure at t = 50.15.

(c) Pressure at t = 100.33.

TABLE I
COMPARISON OF FINE MESH EDDY STRUCTURE AT TIME T = 450

Method Lower Upper Upper Upper
length start end length

Gartling [26] 12.20 9.70 20.96 11.26
Q2 − P1 11.4369 9.2809 20.4372 11.1560
Q1 − P0

with α = 0 11.4059 9.2501 20.4372 11.1873
Q1 − P0

with α = 1
4
ν 11.4059 9.2501 20.4372 11.1873

Q1 − P0

with α = 1
4

11.4059 9.1561 20.3123 11.1564

(d) Pressure at t = 450.02.
Fig.6: Pressure generalized by stabilized Q1 − P0 and
ν = 1/600.

Table I shows the comparison of fine mesh eddy structure at
t = 450. The results with α = 0 and α = 1

4ν are indistinguish-
able. On the coarse mesh, the Q1 − P0 approximations with
α = 0 or α = 1

4ν are much closer to the reference Q2 − P1

results than the results with the results with α = 1
4 . In adition,

all four results are in close agreement when computed using
the finer mesh. The reference values provided by Gartling [26]
are presented in Table I. It can be seen that our fine mesh
results at the final time are slightly smaller than the reference
values. Since as discussed in [32], the blunt inlet channel in
[26] is known to give longer separation eddy lengths when the
viscosity is small.
Table II and Table III show the number of preconditioned
GMRES iterations for coarse mesh and fine mesh respectively,
at the time t = 190 . The optimally stabiliized system with
α = 1

4ν is significantly better conditioned than the over-
stabilized system with α = 1

4 .
Looking at Fig.5, the spurious pressure oscillations of un-
stabilized Q1 − P0 can be seen to diminish inmagnitude
as the viscosity parameter is reduced. This suggests that
the stabilization parameter should be scaled in proportion to
the viscosity in order to avoid over-stabilizing the pressure
approximation. The pressure solution evolution is shown in
Fig.6. These pictures show that the pressure changes rapidly
at the beginning and goes to a steady-state at the end of the
time interval.
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TABLE II
NUMBER OF PRECONDITIONED GMRES ITERATIONS FOR COARSE MESH

AT TIME T = 190

Method Standard Rescaled
Q2 − P1 14 12
Q1 − P0

with α = 0 7 7
Q1 − P0

with α = 1
4
ν 7 10

Q1 − P0

with α = 1
4

34 82

TABLE III
NUMBER OF PRECONDITIONED GMRES ITERATIONS FOR FINE MESH AT

TIME T = 190

Method Standard Rescaled
Q2 − P1 10 9
Q1 − P0

with α = 0 7 7
Q1 − P0

with α = 1
4
ν 8 9

Q1 − P0

with α = 1
4

32 68

Fig.7: Comparison between uniform and adaptive method.

0 1 2 3 4
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0.005

0.01

0.015

0.02

0.025
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Fig.8: Estimated error ηT associated with 32×96, square grid
of a Q1−Q0 solution for the flow at t = 100, with ν = 1/100.

VI. CONCLUSION

In this paper, we were interested in the numerical solution
of the partial differential equations by simulating the flow
of an incompressible fluid. We applied the finite element
method to the resolution of the unsteady Navier-Stokes
equations. The matrix system is solved at each iteration
with a preconditioned GMRES method. We obtain a faster
convergence. We also study a posteriori error estimates for the
finite element approximation of the unsteady Navier-Stokes
problem and we proposed two types of a posteriori error
indicator, with one being for the time discretization and the
other for the space discretization. We prove the equivalence
between the sum of the two types of error indicators and the
full error.

Numerical experiments were carried out and compared with
satisfaction with other numerical results, either resulting from
the literature, or resulting from calculation with commercial
software like Adina system.
The comparisons show good agreement.
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